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Abstract. 4-dimensional Lorentzian geometries admitting a shearfree optical geo- 
metry are considered. Cartan's chains defined on a 3-dimensional CR manifold 
are lifted to null curves. It is proved that all o f  them are geodesic iff  the lCeyl 
tensor is o f  Petrov type N and the metric admits a twisting null conformal-Killing 
vector field. Such metrics are shown to be Fefferman's metries. In another case, 
there exist at most two congruences of  null geodesic chains. 

1. INTRODUCTION 

C a u c h y - R i e m a n n  (CR) geomet ry  appeared  in ma themat ics  as a s t ruc ture  

) character iz ing real ,  2 n  - 1 dimensional  hypersurfaces  in (r n . This def in i t ion  has 

subsequent ly  been generalised to  deal  wi th  an arb i t ra ry  odd-d imens iona l  real  

manifold .  Cartan [3] and Chern & Moser [4] def ined a family of  curves on a 

CR mani fo ld ,  which were called chains. They  play a similar role to  tha t  p layed  

by geodesics in the  case of  Riemann geomet ry .  CR structures  f ind appl ica t ions  

in gravi tat ion theory ,  while Lorentz ian metr ics  are used in the  s tudy of  CR 

structures.  
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Optical geometry was introduced in gravitation theory by A. Trautman [2] 

as the simplest structure required for the study of null Maxwell and Yang-Mills 

fields. If  the so-called shear of an optical geometry vanishes, then the optical 

geometry fixes in a unique and one-to-one manner a certain 3-dim CR geometry. 

The class of  4-dimensional Lorentzian metrics associated with a shearfree optical 

geometry (and thus with a corresponding CR-structure) plays an important 

role in the theory of exact solutions of Einstein's equation [ 11 ]. 

On ther other hand, C. Fefferman [7] (see also [6]) associated a conformal 

class of 2n-dimensional Lorentzian metrics with each pseudoconvex 2n - 1 

dimensional CR geometry (the case of  n = 2 will be of  interest in the sequel). 

Cartan chains are projections of null geodesics of Fefferman metrics. K. Koch 

[8] studies a wider class of  metrics, null geodesics and their projections on CR 

manifolds. The properties of  curves so obtained are compared to the properties 

of  chains using the example of  the G6del metric in her work. 

In the present work, all 4-dimensional metrics connected through shearfree 

optical geometry with 3-dimensional CR structures are considered: Fefferman 

and Koch metrics are particular elements of  the Trautman class studied here. 

In Section 1 the descriptions of  optical and CR geometries are presented. 

Section 2 reviews the definitions of  Cartan-Chern connection and chains. 

Section 3 is devoted to th- study of the question of  when a projection of a 

null geodesic is a chain. This involves lifting the Cartan-Chern connection to the 

4-dimensional spacetime endowed with a Lorentzian metric. Then, making use 

of  this lifted connection, a certain conformally invariant exact 2-form de is 

defined, whose vanishing implies that the metric is of  the Fefferman class. It 

is proved that if the projection of any null geodesic is a chain, then the metric 

is a Fefferman metric (this is the converse to the well-known theorem [6]). In 

all other cases, an algebraic equation is derived which singles out at most two 

null directions at each point. If  a null geodesic which projects to a chain passes 

through a given point, then this geodesic must be tangent to one of these null 

directions. 

In Section 4, the class of  metrics admitting a null conformal-KiUing vector 

field is studied in detail. The connection between the form de defined in Section 

3 and the algebraic properties of  the Weyl tensor are studied. It is proved that 

the necessary and sufficient condition for the null directions defined in Section 

3 not to exist is that the metric be of Petrov type III and that the degenerate 

principal direction of the Weyl tensor be tangent to the conformal Killing vec- 

tor. 

G.A.J. Sparling (in an unpublished work) has proved a theorem that specifies 

which among 2n-dimensional metrics belong to the Fefferman class. In the 

present work, a somewhat more stringent statement is proved for the 4-dimensio- 
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nal case: a non-conformally-flat metric is a Fefferman metric if and only if 

it is of Petrov type N and admits a twisting null conformal-Killing vector field. 

These considerations are illustrated by the examples of  the G6del and Taub- 

NUT metrics. 

In the paper we will consider a 4-dimensional manifold M with a metric tensor 

g of  the Lorentz signature (+ + +-- )  and a distinguished null vector field k (k :/: 0, 

g(k,  k )  = 0). 

An optical geometry [1] of  the pair (g, k) is defined by a real 1-form X and 

a complex-valued 1 -form p such that 

i) ju(k) = X(k) = 0 (1.1) 

ii) the metric tensor g takes the form 

(1 2)  g = ez(u- f i  - ;~v) 

with an arbitrary function P and 1-form v. 

Given an optical geometry (M, ;% ta), the pair (X, p) is determined up to a 

transformation 

(1.3) ~' = a )t 

(1.4) ta' = boa + cX) 

where a is a real function and b, ca re  complex functions (a, b ¢ 0) .  

Henceforth we will assume that an optical geometry is shearfree; that is ,  

(1.5) ~k  x A ~ . = 0  

(1 6) ~k/AA ~kAp = 0  

where -~ denotes Lie derivative. Condition (1 .5) i s  equivalent to thegeodesi ty  

of  k (i.e. due to (1.5) each curve tangent to k is geodesic with respect to g). 

The vector field k is geodesic and its shear vanishes if and only if (1.5), (1.6) 

hold. 

An optical geometry was defined by A. Trautman [2] in connection with 

the study of null Maxwell and Yang-Mills fields. A gauge potential is described 

by a g-valued 1-form A, where g denotes some Lie algebra. It is called null if 

there exists a (necessarily null) vector field k such that the field strength 

1 
(1.7) F = d A  + - -  [A,A] 

2 

fulfills 

(1.8) k j ( F  + i ' F )  = O. 
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The Hodge dualisation * depends on a metric g: however, *F is only related 

to the optical geometry of (g, k). The Yang-Mills equations 

(1.9) d*F + [A, *F] = 0 

imply that the optical geometry must be shearfree. 

A 3-dimensional CR structure consists of  a 3-dimensional manifold N and 

an equivalence class of  pairs of 1-forms [(X, /a)] which satisfies the following 

assumptions: 

i) ~ is real and/a is complex; 

ii) X ^ ta A ~Sa 0 (1,10) 

iii) any two pairs (X it) and (X', k t') are related by a transformation (1.3 - 1.4) 

with functions a, b, c defined on N (a is real and b, ca re  complex). 

Suppose 

(1.1 1) M = I R x N  

and X, # are extended to M by the canonical projection 

(1.12) ~r : ~ x N--,,N. 

The vector field k (given by (1.1)) is tangent to the fibres of lr and a pair 

(X, ta) defines an optical geometry on M. One easily verifies that this optical 

geometry is shearfree. 

Conversely, any shearfree optical geometry (M, ~', X') may be locally repre- 

sented by a cartesian product (1.11) with some 3-dimensional CR structure 

(N, U, X). 

2. CARTAN-CHERN CONNECTION AND CHAINS 

Because of the important role played by Cartan-Chern connection and chains 

in this paper, this short section is devoted to their definitions. They are based 

on the works of  E. Cartan [3] and S.S. Chern, J.K. Moser [4]. We do not use 

here the 8-dimensional principal fibre bundle which is provided by the SU(2, 1) 

Cartan connection. The SU(2, 1)-valued l-form co introduced below is defined 

directly on the manifold N of the CR structure and is related to the Cartan- 

Chern connection by an appropriate section of the bundle. 

We will assume throughout this work that a CR structure (N, /a, X) is non- 

degenerate (and pseudoconvex as a consequence); that is, 

(2.1) X^ d X : ~ 0  

The requirement (2.1) makes the vector field k consider in the previous section 
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twisting (i.e. kt,~ ktr.rl 4= 0). 
By a transformation (1.3) we normalise X to satisfy 

(2.2) X ̂  dX = i/a ^ ~-^ X. 

Let co = (co~)j,k=0,a ,2 denote a matrix of l-forms, 

1 1 
k _ II4, coo = 3 (2112 + n2) '  coo = i n 3  ' coo = 2 

1 1 
1 = - - - - 1 1 3 '  (2.3) coo 1 ----/2, 0) 1 7 (~2 -- I I2 ) '  col = 2 

1 
COo2 =2X co~ =2 i~ ,  co~ = - - - ~  (2H 2 +112), 

with 112' fI3 being complex and 1-I 4 being a real 1 -form. The expression 

(2.4) ~il = dw~ + coik ^ co.kj 

gives the curvature I2. The choice of (Ha)a= 2,3,4 in (2.3) becomes almost unique 
if we require ~ to be of the form 

1 
~ o  = o, n ° = i a .  ^ x, a ° = T ( s .  + ~) ̂  x 

1 
. . . .  R~'A (2.5) ~-~1 ____ 0, ~'211 0, .a~ 2 

ao: =0  e~ =o, al = o  

The complex functions R and S are defined by (2.5). They can be expressed 
by coefficients (and their derivatives) of Riemannian connection related to a 
metric (1.2)i However, there is no simple way of describing R and S only by 
Riemann curvature coefficients. 

The remaining freedom consists in trasformations 

t 

rI 2 -- ]712 + p~k, 

(2.6) 1-I 3 = H a + 0/a, 

I14 = II 4 + dp + p(rl 2 + n 2) + p2x, 

where P is a real function. 
Equations (2.5) subordinate I I  to the choice of a pair (X, /a) representing 

a 

a CR structure. 
A transformation of (X, /~) into (X,' /a') leaving the CR structure (N, ~t, ),) 
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invariant is restricted by (2.2) to 

(2.7) X' = t2X, 

la' = te3i° (la + fiX), 

where t, 0 are real (t ¢ 0) and 13 is a complex function. 

The functions t, O, ~ and p used in (2.6) may be collected into a matrix 

h ESU(2,  1), 

e'°(1 ) 
0 , , 

ho = t e i ° ' h ° = i f f e - 2 i °  h °  - 4 t  2 p+ilt31z 

e i o  

(2.8) 1,1 =o, h I = e  = - - -  

2t 

1 
hg = 0 ,  h~ = 0 ,  h 2 = - - e  i°. 

t 

The convenience o f  using co becomes more visible if we write the transforma- 

t ion of  co which follows from (2,6, 2.7) as 

(2.9) co' = h -  1 coh + h -  1 dh. 

Then the curvature goes into 

(2.10) ~2' = h -  1 ~h.  

The 1-form co given by (2.3 - 2.5) we call the Cartan-Chern connect ion 1-form. 

There is a distinguished class o f  curves in a CR manifold (N, ta, X) which were 

called chains by Cartan [3]. After the above preparation, we are ready to quote 

Chern-Moser definition. Let n be a curve in N and let n(r) denote the tangent 

vector to n at the point  n(r) .  Suppose 

(2.11) X(h) 4: 0. 

Choose (X', tL ') such that  along n 

(2.12) /a' = ta --  ~ X 
X(h) 

and find the connect ion form co' associated to (X',/2'). The curve n(r) is a chain 

iff 

(2.13) co'l°(h) = 0. 

We will n o t  need in our considerations an explicit expression for (c@). It can, 
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however, be obtained by using of (2.2) - (2.5). Such a formula was derived in [5] 

in the case of (N, g, X) admitting a nonconstant solution z of the equation 

(2.14) dz A /~ ^ X = 0. 

To complete the discussion, let us note that the function R defined by (2.5) 

is transformed by (2.10) to 

1 
(2 15) R ' =  e 6 i ° R  

7 ' 

and unless R = 0, R may be normalised to get 

(2.16) R = 1. 

Then a second condition imposed on h, independent on (2.16), 

(2.17) Redo '° = 0 

singles out a pair (X',/~') up to a change of a sign, 

# '  = - - ~ .  

On the other hand, if 

R = 0 ,  (2.18) 

then also 

(2.19) S = O ,  

and (X, /a) is equivalent (by means of (1.3 nd (1.4)) to the following (X', ta') 

(2.20) #'  = dz, X' = -- --  (du + tTdz  - izd-~), 
2 

where (u, x, y) is the appropriate local chard on the CR manifold N and z = 

= x  + i y .  

3. CHAINS IN LORENTZ GEOMETRY 

Throughout this whole work M denotes a 4-dimensional oriented manifold 

with a pseudoriemannian metric tensor g of the Lorentz signature ( + + + - - ) .  

Our basic assumption on g is that it admits a twisting, shearfree, geodesic and 

null (SGN) vector field k. All considerations are local and refer to neighbourhoods 

of nonsingular points of presented constructions. 

As was explained in Section 1, we identify M locally with the Cartesian product 
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(3.1) M =IR x N 

where the  3-dimensional  mani fo ld  N is equipped with a nondegenera te  CR struc- 

ture (X,/a). The metr ic  g is wr i t ten  as 

(3.2) g = P2 (tag - )ku) 

wi th  a real func t ion  P and a real l - form u bo th ,  defined on M. Considering all 

possible g is equivalent  to  considering all possible (N,/a, ),), P, v in (3.2). 

DEFINITION 3.1. A null  curve in M is called a nul l  chain i ff  it  p ro jec ts  into a chain 

in N. 

We s tudy in this sect ion the fol lowing prob lem:  when is a null chain a null 

geodesic? 

The proper t ies  of  being a null  chain and a null geodesic depend  on the con- 

formal  geomet ry  of  g. We begin with two steps: first we extend the Cartan- 

Chern connec t ion  form to M, and second we define a confomal ly  invariant  

2-form involving more  in fo rma t ion  about  the conformal  geomet ry  (the Cartan- 

Chern connec t ion  - even ex t ended  - depends  only on the opt ical  geomet ry  

of  (g, k)). 

Let  vec tor  f i e l d s  (ei)i= 1 . . . . .  4 set up a conformal ly  null f rame on M: that  is 

e3, e 4 are real, 

(3.3) e 1 = e-~ is complex ,  

and denot ing by  (et)i= 1 ..... 4 t he dual  coframe to (e i) we can wri te  

(3.4) e l e  2 _ e3e 4 = ¢2g  

where ~b is a real func t ion  on M. 

We restr ict  ourselves to (e i) fulfilling 

(3.5) e4 II k, 
(3.6) de 3 A e 3 = ie I ^ e 2 A e 3 . 

For  example ,  

(3.7) e 1 = ~, e 2 =/a,  e 3 = ;k, e 4 --- v, 

with (X,/a) sat isfying (2.2).  

Any  two coframes (e 'i) and (e  t)  are related by  a t r ans format ion  

(3.8) e '1 = t e 3 i ° ( e  1 + fie 3) 

e'3 = t2 e 3 
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e'4 = e  4 +~-e I + f i e  2 +1/312 e 3, 

where t, 0 are real and 13 is a complex function.  Put t, 0, /3 and a real funct ion 

p defined on M in to (2.8) and construct  a matr ix  valued funct ion h. Let (e i) 

and (e 'i) be as in (3.7), (3.8). We set 

( 3 . 9 )  ~ '  = h -  1 7r*wh + h -  1 dh 

where ¢o is the Cartan-Chern connect ion form corresponding to (X, g)  and lr is 

as i n  (1.12). The prime in (3.9) arises f rom (eq) .  The above definit ion leaves 

the t ransformat ion  rules (2.9), (2.10) and the form o f  ~ in (2 .5) invar iant  (with 

co, ~2, /z, X replaced by ~ ,  ~ ,  e 1, e 3 respectively and h associated to (3.8)). It  

follows f rom (3.9) that  after  a coframe change (3.8), a 1-form ~ goes into 

~)'11 = t.O~ -- 2 idO + i~e 1 + i/3e 2 + iO~e 3 . (3.10) 

Let us define 

(3 .1 l )  e = e 4 + iff~ ~. 

By (3.8) and (3.10), e is t ransformed to 

(3.12) e' = e + 2dO. 

Thus a 2-form de is uniquely defined. 

PROPOSITION 3.1. l f  g and g,'are associated to the same (N, tz, X) and 

(3.13) de = d e ' =  0, 

then the conformal class [g'] is related to [g] by a di f feomorphism which leaves 

the integral curves o f  k invariant. 

Proof. From (3.13), (3.7) g is conformaUy equivalent to 

(3.14) ~ = / a ~  - X(d¢ - i ~  I ) 

where de  = e. Let the f u n c t i o n s  (xi)i= 1,2,3 and the funct ion r be coordinates 

in N and ~ respectively. Then (x i, r) parameterises ~ x N and 

x = X~(x/) dx i, u = Ui(x j) d x  i 

= (xJ)  dx  t. 

Defining a diffeom orphism 

: (x i, r) --, (x i, ~(x;, r)), 

we can write 
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(3 .15)  gF = q5- 1 * g = / a P  -- )k(dr -- i~11 )" 

Similar ly ,  

gF - - - - q b ' - l * g '  • 

which  f inishes the  proof .  

DEFINITION 3.1. A m e t r i c  which fullfils (3 .13)  is called a F e f f e r m a n  metr ic .  

This  de f in i t i on  agrees w i th  [6] (see also [5]). 

THEOREM 3.1. The f o l l o w i n g  are equivalent :  

i) de = 0;  

ii) each nu l l  chain is nul l  geodesic  

iii) each nul l  geodes ic  is a nul l  chain. 

Proof .  Fix  a f rame (e i) (and  the  dual  cof rame (ei))  and  set 

1 
e i e I (3 .16)  - -  ei] ^ = de. 

2 

Cons ider  a nu l l  curve re(r)  in ~ x N. We choose a pa rame t r i s a t i on  such tha t  

the  t angen t  to  r e ( r )  is 

(3 .17 )  rh ( r )  = e 3 - / 3 ( r ) e  1 - ~( 'r)  e 2 + fl~ e 4. 

T h e n  we e x t e n d  the  co mp l e x  f u n c t i o n  /3 to a n e i g h b o u r h o o d  o f  re(r) and  

def ine  a n e w  f rame 
t 

(3 .18)  e I = e 1 - / 3 e 4 ,  

t 

e 2 = e  2 --/3e 4, 
! 

e 3 = e 3 - / 3 e  1 - / 3 e  2 +/3~e 4 , 

t 

e 4 = e 4 . 

Acco rd ing  to De f in i t i on  3_I. and  (2 .13) ,  (3.9),  it is easy to see tha t  r e ( r )  

is a nul l  cha in  i ff  

^ n  0 F (3 .19)  6o 1 (e 3) = 0 

O n  the  o the r  hand ,  the  geodesic e q u a t i o n  for r e ( r )  m a y  be wr i t t en  as 

r 
(3 .20)  (de '4)  (e '  3, e I ) = O. 
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(3.21) 

Hence 

(3.22) 
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(3.11) and (2.5), which is valid for ~ ' w i t h  ta, X being replaced b y e  '1, 

is found that 

-~,0). de '4 = de + i ( e  '1 ^ fro '0 - e '2 A ~ 1 

(3.20) gives 

e31 +(e43 + e l  2 ) ~ ' + e 2 4 ~ 2  • ^ , 0  , - z t o  1 ( % )  = 0 

along the curve m ( r ) .  

We observe that (ii), (iii) follow from de = 0. In order to show the implications 

ii) ~ i) and iii) -* i), we consider all null geodesic chains which pass through 

a fixed point m. The assumption ii) (or iii)) implies that (3.22) holds at a point 

m for any complex ~ and with vanishing ~,0 (e ,  3 ). Thus 

e . . = 0  

in an arbitrary point m E IR x N. This completes the proof. • 

We now turn to study the case 

(3.23) de 4= 0. 

Let us go back to equation (3.22). Note that a necessary condition for the 

existence of a null geodesic chain passing through a point m is the existence of  

a complex solution 13(rn) of the equation 

(3.24) ca1 + (e43 + el2)/~--(m) + e24 ~2(m) = 0. 

We divide the rest of this section into two parts. 

a) Suppose (3.24) has no solution/3(rn) in some open set 

U C I R x N .  

This means that we have 

(3 25) e14 = e24 = el2 = e34 = 0, 

e13 ~ 0 ~ e 2 3 .  

Thus de has the form 

(3.26) d e = ( g S e  I + ~ e  2)Ae3 

with a complex function • fullfiling the integrability condition 

(3.27) d[(d~e 1 + ~ e  2 ) A e  3 ] = 0 .  

(3.27) written in the coframe (3.7) reduces to an equation on the function 

q~ defined on N, 
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m 

(3.28) d[(¢/a + cb/a) ^ X] = 0. 

The same equation appears as one of  the Maxwell equations for  a null electro- 

magnetic  field. Its solubility was discussed by J. Tafel [9], based on the results 

o f  H. Jacobowitz  and F. Treves [ 10]. For example,  in the case o f  an analytic 

(N,/~, ),) eq.  (3,28) is soluble, so this class o f  metrics is not  empty.  

THEOREM 3.2. Condition (3.25) is equivalent to the following pair o f  properties: 

i) k is tangent to a triple principal null direction o f  the Weyl tensor o f  g: 

ii) k is parallel to a twisting con formal-Killing vector field o f  g. 

The proof  o f  this theorem is presented in the next  section (Theorem 4.1). • 

b) Suppose (3.24) admits a solution. 

Let  the complex funct ion /3 be given by (3.24) on some open subset U C M. 

A congruence o f  null curves is defined by (tangent to)  the vector field 

(3.29) X = e 3 - - / 3 e  1 - ~-e 2 + / 3 ~ e  4 . 

As follows from (3.24) there are at  most  two such congruences. 

Conclusion 3.1. Any  two of  these properties o f  a curve m(r)  are equivalent: 

i) re(r) is a null geodesic; 

ii) re(r)  is a null chain; 

iii) one o f  the vector fields defined by (3.24), (3.29) is tangent to m(r). 

REMARK 3.1. The requirement that  the vector field X be geodesic imposes 

an extra condit ion on the conformal  class [g]. This condit ion has not  been exami- 

ned yet .  

We find now all the congruence o f  null geodesic chains in the cases o f  the 

G6del  and Taub-Nut metrics 

Examples 

(1) G6del universe 

The formula of  the G6del metric tensor which is most  suitable for  out  purposes 

was written in [ 1 ], 

1 
(3.30) g = ~ { -  2(x du - dy)  (x d r -  dy)  + dx 2 + dy2}. 

Both vector fields b and ~ are null, geodesic, and shearfree. Let us choose 
r u 

(3 .3 ! )  k = a .  

A CR manifold (N,/a, X) is represented by the hypersurface r = 0 and 



(3 .32)  ~ = 2x (x du - d y )  

z = x + i y .  

We construct  a cof rame in ~ x N, 
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la = dz ,  

1 
(3 .33)  e 1 =/a,  e 2 = ~, e 3 = X, e 4 = dr - m dy. 

x 

75 

el4 = 513 = 0 

We obta in  finally the unique vector  field 

X = a u . 

Let  us note  tha t  this is exac t ly  the  second shearfree geodesic and null vec tor  

field admi t t ed  by the metr ic  tensor  (3.30).  The nullness and geodes i ty  o f  X 

and Conclusion 3.1 imply  that  the integral  curves o f  X are the  only  null  chains 

in this  spacet ime.  

(2) Taub-Nut  metr ic  

(3 .35)  g =  
1 

{dz d r -  2 P  2 io l  2 x (dr - U'A)} 
2 p 2 x  2 

where 

X = du + ~1 po 1, (iz d r -  IT dz), 
2P 

1 
P =  1 + nz-~, n = + _ - - o r  0, 

4 
x = ( r - i [  p0 [ ) - 1 .  

u=-2 .+ lp12  (r~+2. Ip°12) 
¢,  p0 _ a real constants .  

Similarly,  as in example  (1), we find the unique vec tor  field (up to a scaling 

fac tor )  

To find all the vec tor  fields X given by  (3.24),  (3.29),  we compute  (see (2.3))  

1 i i 
(3 .34)  112 = - - # +  X, II 3 = ~ / a ,  

X 8 ~  8X 2 
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(3.36) X : a u -k UO r. 

One can check that X is geodesic (so it is a chain too). Moreover, its shear 

vanishes. 

In the calculations we have used an explicit formula for the Cartan-Chern 

connect ion written in [5]. From (3.11) and (3.16) we have derived ei/. Next 

we have solved (3.24) with respect to ft. 

Finally we have constructed the vector field X assigned by (3.29). 

4. A METRIC ADMITTING A TWISTING NULL CONFORMAL K I L L I N G  

VECTOR F I E L D  

We now restrict our at tent ion to the case of  the vector field k generating 

a conform al symmet ry  of  g. But before this, let us recall some properties of  

unrestricted (even nontwisting) shearfree geodesic and null (SGN) vector fields. 

PROPERTY 4.1. [1]. A vector field k is SGN with respect to a metric tensor 

g if and only if it satisfies 

(4. I )  .~kg = ~g + g(k) ~, 

where g(k) is a 1-form given by 

(4.2) g(k) (u) = g(k, v) 

and ~o, ~ are arbi t rary.  

It is clear that  any null conformal-Killing vector  field Y 

- that  is a Y such that  

(4.3) ~ ' r  g = qgg 

- is in particular shearfree and geodesis. 

Note also that  a rescaling of  k by a funct ion f v i a  

(4.4) Ic = f k  

makes (4.1) become 

(4.5) ~ g  = f ~og + g(~c) (~ + d In}'). 

Therefore the condit ion 

(4.6) d~ = 0 

is necessary and sufficient for the existence o f  a Ic which is parallel to k and 

generates a conformal  symmet ry  of  g. 
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PROPERTY 4.2. [1]. If k is SGN with respect to the metric g, then it is tangent 

to one o f  the principal null directions o f  the Weyl tensor. 

THEOREM 4.1. I f k  is a twisting, null conformal-Killing vector f ield with respect 

to g, (e i) is a frame given by (3.3) - (3.6) and de is the 2-form defined by (3.11), 
then k is tangent to a Weyl tensor principal null direction o f  multiplicity at  least 

a) i (always) 

b) 2 iffe14 = e24 = e34 = 0 

c) 3 i f f  el4 = . . . = . . . = e 1 2  = 0  

d) 4 i f f  de = 0 

(4.7) 

(4.8) 

(4.9) 

Proof. The multiplicity o f  a principal null direction k o f  the Weyl tensor may 

be defined as follows: 

(4.10) k is single ¢=* Cijmnki k m 0 1 W  n = 0 

(4.1 1 ) k is double * ~  Cij m n k i  k m  01 = 0 

(4.12) k is triple *=* Cijmn k i v m = 0 

(4.13) k is quadruple *=* Cijmn k i = O, 

where o, w run over all vectors or thogonal  to k. 

Conditions (4.7) - (4.9) are invariant with respect to  the admissible transforma- 

tions (3.8) of  the coframe (ei). Let us fix the coframe (3.7), that  is 

(4.14) e I =/a ,  e2 = 3 ,  e 3 =;k, e 4 = v .  

Since e 4 is parallel to a conformal-Killing vector,  we may use (4.6) with k in 

(4.1) being replaced by e 4 . Thus we obtain 

(4.15) d(e41 tx e I -t- e42 e2 q- e43 e 3) = 0. 

The vector k, according to Properties 4.1, 4.2 is automatical ly tangent to  the 

principal null direction; that  is, (4.1 0) holds. 

k is double (i.e. (4.11)) i f f  

(4.1 6) C4143 = 0. 

In the null tetrad (4.14), we get 

1 
(4.17) C4143 = -~ (e4(e41) - ie41 ). 

Solving (4.15) - (4.17), we get 
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(4.1 8) el4 = e24 = e34 = 0, 

which concludes the p roof  o f  b). 

The vector  k is triple iff 

(4.19) C4143 = C4132 = 0. 

One can compute  

Im C4132 = 0 

i 
(4.20) Re C4132 = 4 e12' 

where (4.18) was used (since the l -form de is real its coefficient e12 with respect 

to the basis (e i) is pure imaginary). 

This finishes the proof  of  c). 

Finally, to secure (4.1 3) it suffices to solve 

(4.21) C4143 ~-" C4132 = C4331 = 0. 

When (4.20) and (4.19) are satisfied, then a computa t ion  gives 

3 
= - -  - -  i el3. (4.22) (74331 4 

Substituting (4.22) into (4.21) completes the p roof  of  the t h e o r e m .  • 

Let us summarize our  results concerning Fefferman metrics; that  is metrics 

such that  de = 0. Going back to the expression (3.15), one can see that O r is 

a Killing vector field of  gF" Therefore, any Fefferman metric admits a conformal-  

Killing vectorfield. With Theorem 4.1.d), we note that  any Fefferman metric 

is either o f  Petrov type N or it is conformal ly  flat; i.e. 

(4.23) Cijkt = O. 

It was shown in [5] that  a conformally  flat metric is related as a Fefferman 

metric to (N, #, X) given by (2.20). 

Conclusion 4.1. A 4-dimensional conformally nonflat  Lorentz  metric is a 

Fefferman metric if and only if it is o f  Petrov type N and admits a null twisting 

vector field, which generates a conformal  symmetry .  

5. CARTAN-CHERN CONNECTION AND YANG-MILLS EQUATIONS (*) 

An optical geometry and a corresponding CR geometry were introduced in 

(*) We thank Jacek Tafel for this idea. 
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[1, 2] as structures adapted to study of nu'" Yang-Mills fields. A Cartan-Chern 

connection co extended to the spacetime M (see Section 3) can be understood 

as an su(2, 1) gauge potential. Moreover, it is also null. It is natural to write for 

co the Yang-Mills equations (1.9). 

First we find 

(5 1) 

O, 

* ~ =  O, 

0 

Due to the Bianchi identity 

(5.2) dfi + [~,  fi] = O, 

i 
- R u  ^ ),, - ( s u -  g~) a X 

2 

i 

2 

0 0 

it turns out that the Y-M equations imposed on cb reduce to one real equation 

defined on N. 

(5 .3)  ix  A [d(Su - 6 )  + R ~o ° ^ ~ -  ~ o  ^ u] = 0. 

This equation has not yet been investigated. It may be solved explicitly, for 

example, for CR structures admitting a 3-dimensional symmetry group G 3 . 

Then it has a solution related fo G 3 of the Bianchi type VII h (the classification 

o f  symmetric CR structures can be find in [12]). 
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